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CONCEPTUAL MODELS OF UNIT PERFORMANCE

EXECUTIVE SUMMARY

Requirement:

To investigate the usefulness and potential of natural-analogy and

neural-network models as methods for measuring and predicting unit performance
in training settings such as the National Training Center (NTC)

Procedure:

Literature on neural networks and the doctrine of unit mission in
combined-arms task forces was researched, and a number of data sources were

investigated as possible sources of data for building and validating a pro-
totype model. Data from the NTC, hypothetical data, and data collected from
repeated plays of a wargaming model were used to construct and solve neural-
net models.

Findings:

Limited resources prevented new data collection, and the quality of the

available data limited the generality of the results of this effort. A back-
propagation model was built and trained from the wargaming data and was able
to outperform human experts in predicting the outcome of simulated engage-
ments. Concepts that appear prominent from this neural-network model are

closely comparable to major tenets of Army doctrine.

Utilization of Findings:

Alternative data sources will be required to extend this research to a

more useful application stage. Investigation reveals that the Army/DARPA

SIMNET system, a combined-arms simulation-training system, is capable of
producing a data set comparable to that from the NTC. A recommended next

step is to collect engagement data from SIMNET as a means of providing enough
4uality data to train a neural-net model of unit perfoimance. Iii addition,
follow-on research Lhat inrcorporates an expert judgment-based preprocessor to

a neural net is recommended as the path most likely to produce a model of unit

performance that can be used to evaluate NTC activities.
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CONCEPTUAL MODELS OF UNIT PERFORMANCE

INTRODUCTTON

As the Army enters a period during which budget and manpower

resources are likely to be constrained, the effective allocation of

resources among competing programs and their justification within DoD and

to the Congress becomes increasingly critical. Effective allocation of

these scarce resources can be enhanced if the outputs produced from those

resources can be measured and predicted, allowing the Army to formulate

decision rules which specify the most efficient resource allocations. The

problem is complicated because the most important Army organizational

output--unit performance in combat--cannot be easily conceptualized or

measured in peacetime. Without a valid and usable measure of unit perfor-

mance, it is not possible to evaluate the effectiveness of resource inputs,

build a composite measure of organizational outputs nor link them together

into an integrated cost-effectiveness measurement system. Additionally,

robust measures of unit performance are important diagnostic tools for

evaluating and improving unit training.

The Army has tried several approaches to this problem. One approach

is to use readiness as a proxy for performance. Readiness is an inherent,

peacetime quality which every unit possesses to some degree. Common

measures of readiness include equipment and personnel status, skill

qualification test results, and reenlistment rates in the unit. The Army

currently uses a number of readiness reports and indicators, including the

Unit Status Report (USR) submitted monthly. Many questions have been

raised concerning the USR (Shishko and Paulson, 1981), particularly because

the report lacks measures in the particular kinds of missions the unit can

undertake, or fails to answer the question "Ready for what?"

In recent years the Army has begun to develop measures of unit per-

formance which go beyond the simple and static basis of the USR. These

systems have been focused on identifying the tasks that the unit is ex-

pected to perform and its ability to accomplish these tasks. Much effort

has been put into developing these standards of unit performance. Tradi-

tionally, the .tandards have involved a list of tasks at various degrees of

detail, which, if accomplished one at a time, will define successful unit

performance. The most common of these lists are the Army Training and

Evaluation Program (ARTEP) manuals, now known as Mission Training Plans

(MTP). Of course, accomplishment of the task lists cannot assure a suc-

cessful outcome, but only desirable unit output. The specific mission,

enemy forces, terrain, and other factors also affect the combat outcome.

Most units undergo an ARTEP evaluation every 18 months, and spend much of

the time between ARTEPs practicing the tasks which will be tested.

Even more thorough performance measurement takes place at the Army

instrumented training ranges such as the National Training Center at Fort

Irwin, California, or the Joint Readiness Training Center at Fort Chaffee,

Arkansas. At these sites (and additional facilities to be developed) com-

bined arms task forces are able to maneuver and train against a skilled

resident opposing force in what has become the most realistic (and expen-

sive) replication of real combat available.
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Finally, new technology, as represented in the SIMNET system, may
eventually allow computer simulations of combined arms forces as both
training and performance evaluation devices. If successful, these net-
worked simulation systems will be cheaper and more accessible than the cur-
rently limited opportunities for units to move to an instrumented and
monitored location for realistic training and evaluation.

What all of these measurement systems have in common is that they are
basing their evaluation of performance on a series (sometimes very large)
of discreet individual and collective tasks for a particular unit. Typi-
cally, each task is scored on a go/no go basis. The measure of overall
unit capability or performance is then built from the ability of the unit
to achieve each of the subsidiary goals or meet lower-level criteria. For
example, overall readiness may combine measures such as the percentage of
tLe unit's vehicles or systems which are ready, or the number of skilled
and trained soldiers available compared to the required number on the
unit's manpower document. Overall performance may combine measures such as
whether or not the unit used proper procedures during movement to contact,
or reacted to an NBC alert correctly.

Because each of these sources of peacetime readiness or training per-
formance information measures different qualities of the unit, such as
potential firepower, or state of training and rirale, a series of in-
ferences is needed to develop their relationship to combat performance.
The inference rules which allow these individual observable measures to be
combined into a measure of overall unit performance are highly subjective,
and, therefore, are controversial. Nevertheless, these inferences provide
the critical link between peacetime readiness, training proficiency, and
expected unit performance in combat.

In addition to the inference difficulties, these task lists are ex-
pensive to develop and use. They are typically developed by a work-
breakdown analysis of simulated combat, resulting in hundreds or thousands
of separate tasks. These tasks are themselves complex and often ambiguous,
complicating the measurement problem (Kahan, et al., 1985; Shisko and Paul-
son, 1981). Validity is achieved by observing and interpreting field exer-
cise data from the National Training Center (NTC) and other training
areas.1 Unit performance conceptualized this way is also costly to apply
because it requires a large number of "observer/controllers" to record the
lower-level tasks as the unit performs them. Evaluation of overall unit
performance then requires a complex synthesis of performance of individual

iFor example, the study being conducted by BDM, Inc. for ARI is attempting
to develop task-based performance measures for task forces at the National
Training Center. See Forsythe, Thomas, "A Research Concept for Developing
and Applying Methods for Measurement and Interpretation of Unit Performance
at the National Training Center," ARI Field Unit at Presidio of Monterey,
California, January 1987.
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tasks. While this methodology provides some dia5nostic capability, the
costs, in many cases, far exceed the usefulness.

Measures of unit performance which are lesq subjective and more effi-
cient would improve the Army's ability to assess peacetime readiness, allo-
cate resources, and diagnose training needs. The inspiration behind this
project is to apply to the measurement of unit performance a new,
"natural-analogy" approach to modeling complexity.

A unit is a complex system. Its performance depends on many com-
ponent processes which interact to produce macro-level behavior that is not
always precisely predictable, even when the micro-level processes are well
understood. There has been a recent surge of interest in modeling com-
plexity in natural and organizational processes. In disciplines as diverse
as physics, economics, and biology, it is being realized that traditional
reductionistic models, based on a mechanistic model of the universe, may
not be sufficient to characterize global, "emergent" properties of complex
systems. With the advent of more powerful computing technology, it is be-
coming possible to simulate complex systems of interacting subunits, and
study how micro-level assumptions on the interactions among component parts
influence behavior of the systems at a macro level. The impetus for many
models of complex systems in a number of domains has come from attempts to
describe the behavior of complex systems arising in nature. For example,
nonlinear dynamics and chaos theory (cf., Gleick, 1987) originally arose
out of the physics of turbulent systems, but is being applied to model so-
cial, biological, and economic systems as well. Genetic algorithms
(Holland, 1975) apply insights from the theory of evolution to general op-
timization problems. Neural-network models were developed as models of
cognition in the brain, and are being applied to problems including op-
timization, vision, natural-language understanding, and a host of others
(cf., DARPA, 1988).

The goal of this project is to explore the degree to which this new,
"natural analogy" approach to modeling complexity is useful for modeling
and measuring unit performance. We have chosen to focus on the neural-
network approach for Phase I. The basic hypothesis is that a neural-
network model of unit performance could take account of the multiple
aspects of tactical unit performance as would be observed by a military ex-
pert. Such a model could address a fundamental aspect of unit performance
that cannot be addressed by the current "determinants" paradigm: the com-
plex interaction of unit components as they work together to perform the
unit's mission. The research effort determined the sources and meaning of
available data and proposed and tested an alternative inferential relation-
ship linking these indicators to unit performance. Specifically, the tech-
nical objectives of Phase I were:

2For an excellent discussion of the role of the observer/controllers at the
National Training Center, see the outbriefing presented by COL Larry E.
Word, Former Director of the Joint Readiness Training Center and reported
in Word, 1987.
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to identify the multiple indicators that may be used to es-
timate unit performance;

to develop a methodology for combining them into a single
measure of performance; and

to design and test a prototype of the methodology.

Key questions that were addressed during Phase I were:

Can a methodology be developed that captures the complexity of
the problem yet is simple enough to be used by a variety of
Army users?

* How should the methodology be implemented?

* What is needed to develop a complete model during Phase II?

This Phase I effort has determined the technical feasibility of
modeling unit performance using natural analogy, specifically neural net-
works crained by back propagation. This approach consisted of two tasks:
(1) identification of performance factors and development of a methodology
for combining these factors into a single model of unit performance; and
(2) the design and validation of a prototype model for estimating unit per-
formance.

4



CONCEPTUAL MODELS OF UNIT PERFORMANCE

The music is not in the notes; it's in the pauses between the
notes.

Approach

Defining and validating a measure of unit performance is essentially
a problem of arriving at an appropriate measurement model for overall unit
performance. Judging that one unit i "better" than another unit on a com-
plex set of factors is not that difficult for the human; Army leaders make
these judgments every day in the performance of their command duties. Al-
though these commanders may not easily be able to specify precisely what
factors lead them to classify units as good or poor, and although their
judgments may be incorrect (that i-, lack validity), commanders interviewed
in connection with other research have no difficulty articulating a level
of unit effective.iess and quality. The approach to the problem of develop-
ing a more rigorous and analyti, measurement model of unit performance
begins, therefore, with the assumption that military "experts" can recog-
nize good units when they observe them.

Commanders' assessments of unit performance are based upon a variety
of data, both "hard" and intangible. Inventories of personnel and equip-
ment available compared to the number required provide one set of "hard"
measures, as do scores on soldier skill tests. Measures of soldier quality
also contribute to unit performance, although these apparently hard data
are more difficult to use because the evaluator must define a more complex
inference structure linking AFQT scores to performance. Intangible data
such as the assessment of unit morale or training level, and even to some
extent performance on exercises such as unit ARTEPs, are even more dif-
ficult because easily applied metrics for these soft factors do not exist;
individual judgments become crucial here.

Those considerations apply to the problem of making a static assess-
ment of overall unit quality, but in this research the objective was to
f' velop methods and models for estimating unit performance directly in a
combat engagement, or at least in a simulation of that engagement at thE
National Training Center. In this case, the problem is to predict how well
a unit will accomplish a combat mission such as a defense in position,
withdrawal, or deliberate attack. Moving the focus of the performance
measurement problem to actual (or simulated) combat engagements changes the
nature of the measurement problem substantially.

Much of the focus of both military historians and operations
researchers has been on developing analytic or mathematical models of the
combat engagement. Typically these force-on-force models concentrate on
variables such as force ratios, firepower and casualty rates. In the typi-
cal combat simulation model (such as the JANUS model used by the Army Con-
ceptq Analysis Agency for Total Army Analysis), exchanges between in-
dividual weapons systems are played and aggregated to arrive at force-
attrition ratios which determine engagement and battle outcomes. But many
critics of these approaches argue that these stochastic models fail to
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capture the dynamics or human dimension of actual combat.3 Some of these
variables can in f ct be quantified, although the precise methods and data
are controversial. But an alternative approach based on a more holistic
view of the problem is appropriate as well.

Operations-research approaches to these measurement problems, as well
as most of the existing performance-evaluation methodologies currently in
place. are based upon modeling or measuring very micro-level phenomena or
tasks. This approach has been selected largely because of itc diagnostic
value as a training aid. Thus, the ARTEP evaluation system is based on the
accomplishment of hundreds of specific discreet tasks; simulation models
may replicate thousands of system vs. system engagements. Current evalua-
tions of per'ormance at the NTC are based upon completion of detailed
checklists of tasks and activities relevant to a specific unit or element
in each aission area. These discreet results are then aggregated to arrive
at overall performance or predictions of outc-mes.

But imagine an experienced officer standing on a hill overlooking an
engagempnt aL *t to take piace. Our experience suggests (and we offer as a
hypothesis) tha. this expert observer can tell from relatively straightfor-
ward observation of the forces moving to contact and the initial contact,
what the outcome of the engagement will be; that is, he can predict how
well the unit or task force will pe rform. He does this by recognizing pat-
terns in the movement of vehicles and Lroop units, assessing the ways in
which each side is taking advantage of METT-T, and applying his experience
and expertise to process literally thousands of pieces of data. This
processing is typical of the way in which humans are able to process vast
amounts oi data, and is quite different from the more linear types of
models and problem-solving techniques common in analytic studies of
military phenomena. This natural-analogy approach provides the basis for
the r-search work reported here.

Measures of Unit Performance

Army doctrinal publications provide the starting point for under-
standing the mac-o factors which a natural-analogy model of unit perfor-
mance will be designed to emulate. As will be discussed in more detail
below, one major characteristic of this family of models is that it is able
to recognize patterns of individual inputs in ways similar to the manner in
which humans are able to recognize patterns in visual inputs. One major
application of neural nets has, in fact, been in visual pattern
recognition--nets have been taught to recognize letters of the alphabet

3The Military Operations Rsearch Society (MORS) has in the past two years
been sponsoring a working group dedicated specifically to the problem of
improving the conceptualization and measurement of human-performance vari-
ables in these combat models.

4See the work of COL Trevor Dupuy for examples of attempts to quantify
variables such as morale, leadership, and lethality.
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from partial character representations and to recognize faces from
photographs much as humans do. In these cases, the individual pixels of
visual information are the inputs to the neural net, and the net model is
then able to learn to put these individual pixel data together to recognize
the patterns of pixels which represent characters of the alphabet, facial
features, or terrain features.

Army doctrine also can be characterized as having broad concepts and
patterns which are composed of more micro-data elements. At its broadest
levels, Army doctrine (as presented in FM 100-5) offers eight major con-
cepts which the Army believes will govern success on the battlefield of the
future. These eight are, in turn, grouped into two major categories, en-
titled Dynamics of Combat Power and Airland Battle Doctrine. As these are
discussed in the following sections, the reader should keep in mind the
general nature of the concepts and think about how a trained observer would
be able to recognize the presence or absence (or with even more difficulty,
the amount) of each of these concepts in a real or simulated combat engage-
ment.

Dynamics of combat power. "The dynamics of combat power decide the
outcome of campaigns, major operations, battles and engagements. Combat
power is the ability to fight. It measures the effect created by combining
maneuver, firepower, protection and leadership in combat actions against an
enemy in war" (FM 100-5, page 11).

This exhortation from Army doctrine illustrates the first of the two
sets of high-level measures of unit performance. Maneuver, firepower,
protection, and leadership are principles which are taught to Army leaders
at all levels, and which form the core of successful unit performance.
That is to say, a unit which under battlefield or simulated battlefield
conditions is able to embody these principles in its actions will be suc-
cessful. But the detailed task-list measures of unit performance currently
in place do not appear to get at these overarching concepts successfully,
although Army leaders are able to recognize their presence or absence. How
then can these principles be captured in a unit-performance model?

"Maneuver is the movement of forces in relation to the enemy to
secure or retain positional advantage. It is the dynamic element of
combat--the means of concentrating forces at the critical point to achieve
the surprise, psychological shock, physical momentum and moral dominance
which enable smaller forces to defeat larger ones" (FM 100-5, page 12).
The very terms in which maneuver is defined here defy measurement with task
or check lists. In fact, the underlying concept of maneuver is highly
relational--it concerns how Blue forces move with regard to how Red forces
move. Thus, measurement of maneuver needs to be able to recognize the pat-
tern of Blue force positions over time and in relation to objective, ter-
rain, and Red forces.

Firepower implies much more than its common measurements, number of
rounds fired, or tons of munitions delivered. The discussion of the
firepower concept in Army doctrine highlights the same pattern and dynamic
characteristics emphasized in the previous discussion of maneuver.
Firepower must be measured in the context of what the Red Force is doing
and what the Blue Force desires to prevent him from doing. Again, there-

7



fore, it is the pattern of interaction between Blue and Red forces which
the measurement model must be able to capture. In the context of Airland
Battle doctrine, firepower must be used to disrupt enemy maneuver, to
destroy, delay or disrupt enemy forces, to damage or degrade enemy command
and control and sustainment capabilities, and to overcome unfavorable force
ratios. From the perspective of U.S. commanders, bringing firepower to
bear effectively requires coordination of intelligence, force maneuver,
command and control, and logistics functions. In short, measurement of the
concept of firepower requires much more than simply counting shots fired,
but requires extensive examination of the patterns of a number of other
variables, each of which is difficult to measure in itself.

Protection, the third dynamic of combat power, "is the conservation
of the fighting potential of a force so that it can be applied at the
decisive time and place. Protection has two components. The first in-
cludes all actions that are taken to counter the enemy's firepower and
maneuver by making soldiers, systems, and units difficult to locate, strike
and destroy. ... The second component of protection includes actions to
keep soldiers healthy and to maintain their fighting morale" (FM 100-5,
page 13). Here again, the meaning of the concept extends well beyond what
can be captured in a simple (or even extensive) task list. Judgments about
the adequacy of protection activities require the evaluator to understand
the whole complexity of the situation, to recognize patterns in the
relationships between the elements of the Blue and Red forces, and to place
all of these data in the context of METT-T. These are the kinds of judg-
menits that trained human leaders and experts are able to make, but which
have proven so difficult to capture in evaluation techniques and models.

"The most essential element of combat power is competent and confi-
dent leadership. Leadership provides purpose, direction, and motivation in
combat" (FM 100-5, page 13). The complexity of leadership and its measure-
ment is well documented in the literature. That literature suggests that
leadership must be considered in the context of the situation and high
leveis of leadership often make the difference between success and failure,
in both military and other settings. Leadership is also very difficult to
measure directly--it is often adduced after the fact, rather than being ob-
served during the combat engagement.

AirLand Battle doctrine. AirLand Battle is the Army's philosophy and
concept for fighting a high-intensity war in the future, and in its
doctrinal statement presents a high-level approach for organizing and
utilizing combat forces in that war. As a statement of doctrine, AirLand
Battle is necessarily vague and open to much interpretation, as a review of
the military science and Army journals over the past 5 years will clearly
demonstrate. In essence, AirLand Battle describes a modern battlefield
which is intense, lethal, and dynamic, assumes a three-dimensional bat-
tlefield, and expects that operations on that battlefield will not be
linear but will instead feature deep attacks to interject U.S. forces deep
behind Warsaw Pact lines as well as similar Red incursions into deep areas
behind US and NATO lines. The AirLand Battle will require commanders and
soldiers to be smarter, plan and react faster, and use resources more
decisively.

8



FM 100-5 outlines four basic tenets which will determine the Army's
aLility to succeed on the intense battlefield of the future:

initiative
agility
depth
synchronization.

These four tenets, like the previous dynamics of combat power, are
the underlying concepts which we believe that a model and measurement
method for unit performance must be able to capture and explicate.

"Initiative means setting or changing the terms of battle by action"
(FM 100-5, page 15). It may be the most important of the four tenets be-
cause it captures the basic attitude which Army leaders at all levels must
take to succeed--they must be able to assess the situation and take ap-
propriate prudent risks to achieve their objectives. This means finding a
balance between centralizing and decentralizing control that enables forces
at all levels to react to conditions and circumstances on the battlefield
in the context of overall operational and strategic plans. But how can in-
itiative be measured in the case of combined-arms task force operations?
No check list is adequate, nor can a checklist or task-list approach cap-
ture the dynamics of the situation in which initiative must be measured.

Agility is the ability to act faster than the enemy is able to react,
to keep him off-balance. It requires leaders at all levels who are able to
read and react instantly to changes in the battle, who can process intel-
.igence information as it is received, sort out what is important, and act
decisively. While individual skills which are required to act with agility
can be delineated and presumably measured, the real meaning of the concept
must be measured in the context of the battle, as an answer to the ques-
tion, "Has this unit (leader) acted with agility in this situation?" Only
by looking at the whole flow of the battle can agility be measured.

Depth refers to the non-linear nature of the AirLand Battle doctrine,
and will be reflected in plans and operations which seek to attack the
enemy, not only at the front line, but deep within his rear area. The pur-
pose of the depth strategy is to disrupt enemy command and control, logis-
tics, and movement--to keep him off-balance and thus to create oppor-
tunities to exploit with own forces. Achieving depth requires commanders
to assess and respond to opportunities as they present themselves, and to
use these opportunities to create momentum for U.S. forces. It can be
evaluated only by examining the total picture of the engagement and ascer-
taining whether or not the commander has taken the initiative to identify
and attack opportunities that are presented by the particular situation.

Finally, "synchronization is the arrangement of battlefield ac-
tivities in time, space, and purpose to produce maximum relative combat
power at the decisive point" (FM 100-5, page 17). Achieving synchroniza-
tion requires the commander to be able to visualize the battlefield in all
three physical dimensions plus a time dimension, so he can plan and marshal
his forces appropriately. It requires both clear planning and the ability
to communicate these plans to subordinates who will be forced to act with
some considerable discretion within that plan in order to take advantage of
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the fast-moving changes on the battlefield. The commander (and subor-
dinates) must be able to recognize and react to the flow of events on the
battlefield to achieve synchronization. Measuring the amount of
synchronization achieved in an engagement or training exercise requires the
application of expert judgment; it is one of the major evaluations per-
formed by the observers at the NTC (Word, 1987).

The principles of war. Principles of war were initially formulated
by British Major General J.F.C. Fuller after World War I, and they appear
now in Army doctrine with only minor changes from General Fullers's
original formulation. These principles are major concepts for the planning
and conduct of combat, and are taught to every Army leader. They form the
basis of most training that prepares unit leaders, and their application
should be recognizable in the actions of units in a combat engagement.

The Army currently recognizes nine Principles of War:

* Objective: Direct every military operation towards a clearly
defined, decisive, and attainable objective.

0 Offensive: Seize, retain, and exploit the initiative.

0 Mass: Concentrate combat power at the decisive place and time.

* Economy of Force: Allocate minimum essential combat power to
secondary efforts.

* Maneuver: Place the enemy in a position of disadvantage
through the flexible application of combat power.

0 Unity of Command: For every objective, ensure unity of effort
under one responsible commander.

Security: Never permit the enemy to acquire an unexpected ad-
vantage.

Surprise: Strike the enemy at a time and/or place and in a
manner for which he is unprepared.

Simplicity: Prepare clear, uncomplicated plans and clear, con-
cise orders to ensure thorough understanding.

As with the concepts discussed above, these principles are not easily
measured or evaluated. They all can be characterized as reflecting the
patterns and flow of the engagement, and as such will require an approach
to measurement which is able to capture the dynamics of the modern bat-
tlefield. Measurement techniques based upon sets of tasks to be performed
cannot capture these dynamics adequately, although they can be used to
evaluate the underlying skills which are required to successfully execute
the engagement.

We believe that subject-matter experts watching and evaluating
battles and training exercises are able to evaluate these concepts. Review
of after-action reports from exercises and the report of COL Word suggest
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that the observers of the NTC engagements couch their comments in just such
terms. The doctrinal concepts such as those listed above provide the key
organizing perspective for evaluation of unit performance. A model for
predicting unit performance needs, therefore, to be based upon a similar
approach, one which is able to incorporate the doctrinal concepts that Army
leaders are taught and which underlie all tactical and materiel develop-
ments. The methodology selected must be able to deal with these concepts
as the patterns of activity on the four-dimensional battlefield. This
review suggests that an approach based upon natural analogy can serve this
requirement, and that models of unit performance based upon neural networks
can produce the measures and predictions of unit performance being sought.
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NEURAL-NETWORK MODELS

Overview of Natural-Analogy/Neural-Network Models

In recent years, advances in computer technology, artificial intel-
ligence, and in the understanding of mental processing have led to the
development of a new approach to solving problems of the type being con-
sidered here. Known variously as parallel distributed processing (PDP) or
neural networks, these models are based on an analogy to the functioning of
the human brain and the central nervous system in which complex processes
are occurring almost simultaneously, linked by a complex series of connec-
tions (in the case of the brain, these connections are composed of
biochemical and electrical activity between the nodes). One reviewer has
used this analogy to define a neural network as "a computing system made up
of a number of simple, highly interconnected processing elements, which
processes information by its dynamic state response to external inputs"
(Caudill, 1987). The comparison is drawn to a serial computer which
processes one instruction at a time; the neural network or PDP concept does
not require this sequential set of processing steps but posits that its
nodes respond in parallel to a series of inputs presented to it, and that
the the result is not stored in some specific memory location but is repre-
sented by the state of the system at some equilibrium point. In other
words, underlying the concept of a neural-network model is the notion that
the pattern of elements that comprise the network is the measure of the
status of that network at a point in time.

Neural-network models have found wide-ranging applications in recent
years. Most applications have involved some form of pattern-recognition
activity, such as inspection functions in an assembly line, review of
credit and life insurance applications, computer vision, and voice recogni-
tion software. Unlike the large-scale digital and serial processing ap-
plied to many large database problems, neural networks rely on many simpler
processors, linked together, and modified so that a particular input will
produce a desire outcome. The network relates an input pattern to an out-
put in a statistical rather than an exact manner. The key element about
these neural-network models is that they can "learn"- -that is, they ran be
"trained" to recognize patterns of input data and to make correct in-
ferences from these patterns.

How a Neural Network Works

A neural-network model consists of a set of units, a pattern of con-
nections between units, and a rule for propagating activation levels
through the connections. Units may take on either continuous (typically
ranging between 0 and 1) or discrete (usually 0 or 1) activation levels. A
common class of activation functions is the semilinear activation func-
tions. In a semilinear activation model, activation propagates through the
network as follows (Figure 1). The net input of a unit is computed as a
function (usually linear) of the connection strengths and activation levels
of the units feeding into it, plus a bias term (representing a base level
of activation):
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inputi - ) WijXj + biasi (1)

In this equation, the sum j runs over all units that have direct con-
nections feeding into unit i, and x stands for the activation level of
unit j. The term bias i is the "bas input," or the level of inputi when it
is receiving zero input from the units connected to it.

Next, the unit's new activation level is computed as some function of
its net input:

xi  - f(inputi) (2)

Some commonly used activation functions include the following
(McClelland and Rumelhart, 1988):

Linear: f(z) - z;

1 if z > 0
Linear threshold: f(z) - 0 otherwise;

Stochastic: f(z) - 1 with probability [1 + exp(-z)]
"I

a 0 otherwise;

Logistic: f(z) - [1 + exp(-zl] "I

A neural network's knowledge about a task resides in the network
topology (i.e., the pattern and direction of links between units), and the
connection strengths and biases determining the net input to a unit from
its neighbors. Networks may use local representations, in which each unit
stands for an individual symbol or concept, or distributed representations,
in which symbols or concepts emerge as epiphenomena of patterns of activa-
tion on individual, subsymbolic units. A vigorous dialogue is taking place
within the connectionist community about the importance of distributed rep-
resentations. On philosophical grounds, PDP (parallel distributed process-
ing) purists object to local representations. (C.f., the well-known
"grandmother neuron" objection to local representations: in the human
brain, no single neuron represents the concept of "grandmother.") Yet a
number of models using local representations have produced interesting
results and contributed to our understanding of connectionist modeling
(e.g., Rumelhart and Zipser, 1986). And it should be noted that the
"microfeatures" that form the basic units of distributed representations
are often symbolic entities, albeit at a level lower than the one of
primary interest. Therefore, the debate can be reduced to a discussion of
the appropriate level of representation for the specific requirements of a
given problem. The proper level depends on computational constraints,
robustness requirements, and the availability of a suitable microfeature
representation for a problem.
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Figure 1. Propagation in a neural network.

The network's knowledge--its topology and connection strengths--can
be determined in several ways. The network can be hard-coded for par-
ticular problems (e.g., Hopfield, 1982; McClelland and Elman, 1986); a net-
work with randomly assigned connections can be trained using some learning
algorithm (e.g., Hinton and Sejnowski, 1986; Rumelhart, Hinton, and Wil-
liams, 1986); or some combination of initial structure and learning can be
used (e.g., Laskey, forthcoming).

Learning in Neural Networks

Training from a "blank slate" (with only network structure as a con-
straint) tends to be well suited for low-level problems (such as sonar
classification--Gorman and Sejnowski, 1988a,b) in which a priori decomposi-
tion of the input into a symbolic (or even microfeature) representation may
be very difficult. "Hard coding" and mixed methods seem most suitable for
higher-level problems for which a symbolic or microfeature structure may
already be available, and in which a number of layers (or levels of com-
plexity) need to be represented. It is not clear, for example, whether
training a complex multilevel structure such as a semantic network with in-
heritance (Shastri, 1989) from a blank slate is feasible. Our only model
of such learning is humans. Humans take a long time to acquire such struc-
tures, require structured training, and receive feedback (via language) at

a number of levels, including explicit instruction about the symbolic
structure of the inheritance hierarchy.
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Learning methods for neural networks can be broadly classified into
three categories (DARPA, 1988): unsupervised, self-supervised, and super-
vised. In unsupervised learning, the system discovers natural categories
in unlabeled input data. In self-supervised learning, the system monitors
performance internally with no external teacher, and adjusts its model for
better performance. Self-supervised learning is appropriate for problems
in which the system can generate an internal error signal (such as training
a robot arm to reach and grasp an object in its visual field; the system
can tell from the visual signal how close to the object the arm is). In
supervised learning, an external "teacher" gives the system feedback about
how close its response was to some "target" response.

Some examples of neural-network learning mechanisms are described
below. Competitive learning (Rumelhart and Zipser, 1986) and ART
(Carpenter and Grossberg, 1987) are unsupervised learners that find natural
clusters in input data. Darwin III uses self-supervision to follow and
touch a moving target with a robot arm (Edelman, 1987). The Boltzmann
machine (Hinton and Sejnowski, 1986), the reduced Couloumb energy clas-
sifier (Reilly, Cooper, and Elbaum, 1982), and back-propagation learning
(Rumelhart, Hinton, and Williams, 1986) are examples of supervised learning
systems that can be used for pattern classification. Back propagation is
emerging as perhaps the most popular learning technique for problems in
which labeled training data exist. We focus in some detail on this model
because it is the technique applied in the models of unit performance
developed during this research.

Back-Propagation Learning

Back-propagation is a generalization of the delta rule for learning
in perceptrons, the original connectionist models (Rosenblatt, 1958).
WI'ile the delta rule applies only to two-layer systems, back propagation
can be applied to networks with intermediate layers of "hidden" units,
which provide extra dimensions needed to encode complex patterns.

Back propagation works with any differentiable semilinear activation
function (i.e., one in which a unit's activation is a differentiable func-
tion of a linear net input). The back-propagation algorithm supplied with
McClelland and Rumelhart (1988) uses the logistic-activation function
described above.

The basic back-propagation algorithm works for a particular network
topology called a layered feedforward network (but it can be generalized to
recurrent networks). A layered feedforward network consists of an input
layer, zero or more layers of hidden units, and an output layer (Figure 2).
Connections run from each layer to the next; no connections may loop back
to previous layers. The input layer is set from outside the system, and
consists of a representation of the information in the signal to be clas-
sified (and, optionally, additional information to be used for
classification). The propagation algorithm sweeps through the layers, from
input through the hidden layers to the output layer. It uses the activa-
tion values in one layer to compute the activation values in the next. The
final values computed are the activations in the output layer, which repre-
sent the system's response to the classification task.
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Figure 2. Schematic diagram of a layered feedforward network.

Back propagation gets its name because it propagates the error in the
output back through the layers in reverse sequence (i.e., from output to
input). The algorithm implements gradient descent in weight space--that
'-, it changes weights on each iteration by an amount proportional to the
gradient of an error function that measures how well the neural network
produces the target outputs for given inputs. The error function E is the
squared differences, summed over the patterns, between the output of the
network and the "target" values for the patterns. The error for a given
pattern is given by:

Ep Z(tpi _Xpi )2 (3)

In (3), the summation ranges over the output units i. The value tpi
is the target value for output unit i on pattern p, and Xpi is the activa-
tion value of output unit i when presented with pattern p. The total error
to be minimized is given by summing (3) over all patterns presented to the
system.

After a pattern is presented to the system, the system computes the
gradient of the error function for that pattern, and changes the weight in
the direction of the gradient:

Awij - " aE (4)
awij

In other words, the weight is changed in a direction that decreases
the error E The weight change can be reexpressed (McClelland and
Rumelhart , Y988) as:

Awij - ESpixpj (5)

The term E is an adjustable learning rate; the term Xpj represents
the activation level of the sending unit j when pattern p is presented; and
the term 6p., the proportional weight adjustment, represents the contribu-
tion of a change in the weight wij on the total error. This term 6i. is
computed recursively for each layer in the network using the values ior the
previously computed layer.

17



If unit i is a target unit, then:

6pi - (tpi - xpi)f'(inpuri) (6)

Combining (5) and (6), we see that the change in weight wi after
pattern p is presented is proportional to the product of three factors.
The magnitude of the weight change increases as each of these moves away
from zero. The first factor is the activation level x j of the sending
unit j: an active sending unit increases the magnitude of the weight
change. The second factor is the difference between the output unit's ac-
tivation xpi and the target value t: an output that differs greatly from
the target increases the magnitude o the weight change. The third factor
is the derivative of the activation function with respect to the net input
of the unit: a steeply sloping activation function increases the magnitude
of the weight change.

When unit i is an internal hidden unit, then:

6pi= ( X 6pkwki )f'(inputi) (7)
k

Equation (7) differs from (6) only in the terw for the difference be-
tween target and output: hidden units have no externally specified target.
To obtain an analog for this term, the proportional weight adjustments 6pk
are propagated backward from output units through the layers of hidden
units. The weight adjustments 6pk propagate to 6pi in the previous layer
in proportion to the weights wki.

An equation similar to (5) can be applied to change the unit
thresholds as well as the weights.

The following are the steps in back-propagation learning:

1. Initialize the weights and thresholds in the network. (Often,
the network is initialized with randomly assigned weights and
thresholds.)

2. Present the network with a pattern. Propagate the pattern for-
ward through the network to the output units.

3. Propagate the error backward through the network, using equa-
tions (4), (5), and (6) to compute all weight changes Awij.

4. Repeat steps 2 and 3 over a large number of patterns. Usually
a training set is presented again and again to the network un-
til the improvement in the total error on each step becomes
small.

Building a Neural-Network Model

An experienced Army officer's ability to evaluate the performance of
a unit involves the ability to organize raw input data (positions and move-
ments of individual units or vehicles) into patterns, and to relate these
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patterns of inputs to success or failure of the unit. An officer's verbal
articulation of this process is in terms of high-level linguistic
categories--such as the Principles of War or components of Airland Battle
Doctrine. Each linguistic descriptor (e.g., "making good use of maneuver;"
"poor synchronization") represents a pattern formed from the interaction of
a large number of input stimuli.

Recognition of complex patterns like these is one of the promising
application areas for neural-network technology. The steps in constructing
a neural network for unit performance prediction are as follows:

1. Define the problem the system will solve. What will be the
system's inputs? At what point in the progress of the battle,
exercise, or simulation will the system make its prediction of
performance? What measure or measures of performance will the
system be expected to predict?

2. Design a neural-network model and training procedure. Select a
representation for network inputs and outputs. Decide how raw
input is to be preprocessed before being fed to the network.
Define the network topology and any "hard-wired" constraints on
connections or weights, and select a form for the activation
functions and propagation rules. Select a training procedure.
Define what type of feedback at what levels is to be provided
to the network.

3. Train the network. Gather a set of training instances repre-
sentative of the problems the network is expected to solve.
Present these instances repeatedly to the network until it
learns to classify the instances in the training set.

4. Use the network to classify new instances. Present new in-
stances as they are obtained. The network will classify these
instances using the model it has learned from the training in-
stances. If desired, training can continue on the new in-
stances, or the network can be "fixed" after the training
sample is complete.

5. Evaluate network performance. Evaluation should be based on
how well the system perfurms on test items it has not seen
before (evaluating on the basis of the training sample can give
overly optimistic conclusions).

The application of these steps to build a neural-network model for predict-
ing unit performance is discussed in the next section.
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PROTOTYPE MODELS OF UNIT PERFORMANCE

Approach

The goal of the Phase I research was to investigate tie potential

utility of natural analogy or neural-network models for measuring and

evaluating unit performance, especially for application to units undergoing

training at the National Training Center. Our basic research strategy was

therefore as follows.

Step 1: A model of unit performance must operate from information

about units that can realistically be made available to the model. The

first step, therefore, was to examine the kinds of data that might be
available for operating, and especially for training, a neural-network
model of uni- performance. Two important sources of information about unit
performance have been described above: data from training exercises (NTC

or JRTC), and data from SIMNET training simulations. Examination of the
types of data likely to be available from each, arid analysis of the kinds

of processing that would be required to make them suitable foi neural-

network simulations, was a major focus of this preliminary work.

Step 2: The next step was conceptual design of a nLural-network ap-

proach to unit performance measurement, and implementation of a small-scale

prototype model. The prototype was designed to operate from the kinds of

data likely to be available to such a model, either from field or SJMNET
training exercises. For Phase I, very simple models were developed and

tested. Data from these models came from two sources: subjectively as-
sessed data of inputs similar to those that could be obtained from avail-

able data and results from plays of a commercial wargame. As described
below, a simple neural-network model can make useful measurements and pre-

dictions of unit performance.

Step 3: The final step was to formulate a research plan for extend-

ing this research to a more realistic Army setting and more complex kinds
of data. Such neural-network models must necessarily have more complex

structure than the ones built for Phase I of this project. We hypothesize
that a combination of learning from data and informed hard-coding of struc-

ture will be necessary to build a successful neural-network model of Army
unit performance. The data requirements will be more extensive than for

the small-scale Phase I models; much larger training sets will be required.

National Training Center Exercise Results

As stated above, the first step in the analysis was to identify arid

develop suitable sources of unit performance data for the models. The

first source identified and tested was data from the National Training
Center. The General-purpose NTC Analysis of Training Tool (GNATT) is a
computer program written by ARI-POM which enables selected data from the

INGRES Mission Databases to be displayed on MS-DOS computers having 16-
color (EGA) capabilities. GNATT is based on the assumption that visual

represeration of data is a powerful aid to understandirg. The user can
view the training-exercise movement and engagement activity sequentially,
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change the viewing scale, display various battlefield graphics, and select
units and weapon types for color coding.

GNATT is menu-driven, supports a Microsoft mouse, and was written for
use by non-programmers. On-line, context-dependent help is available
throughout the program. Input data for six engagements were prepared on
the ARI-POM VAX computer using existing INGRES programs, then sent to DSC
in machine-readable form for analysis. The six engagements represented a
wide range of attack and defend missions, and provfied the opportunity to
review the usefulness and adequacy of the GNATT and NTC data for the
analyses required.

The GNATT data were reviewed by carefully watching the plays of the
engagements on a full-color EGA screen as the software processed the data.
Alternative scaling and color coding of unit- and equipment were tried to
maximize the amount of information that could be retrieved. Working with
an initial list of the doctrinal concepts thought to be important, project
staff attempted to ascertain whether a human obseuver would be able to
reach conclusions from the screen presentations to evaluate the degree to
which the conceptual requiremerts contained in the doctrinal principles had
been achieved. The human observer was, in this case, acting as a proxy for
a complete neural-network model which would be able to recognize the move-
ments and locations of forces from the data being processed by the GNATT
model.

For example, we assumed that the principle of mass could be measured
by gauging the concentration of forces on the display, but we learned as we
proceeded that the instrumented data was often incomplete or inaccurate.
The data files from which GNATT is driven capture the position of each in-
strumented vehicle or person every five minutes through the course of the
engagement, yet in many cases vehicles appeared and disappeared, presumably
because the instrumentation was not able to receive position locations from
"'%hicles because of terrain features or mechanical errors. Vehicles which
h-d been "killed" appeared to be reactivated in subsequent time periods.
As a result, we were not confident that what we were watching was an ac-
curate portrayal of what actually took place during the engagement.

Fire-exchange rates were also thought to be important observables for
understanding the pattern and flow of the battle required for developing
and instructing a neural-network model, but the instrumented data were
quite obviously incomplete on this dimension. Vehicles would be "killed"
with no record on the data file of fire exchanges.

Finally, a database of hundreds of cases would be required to provide
a training set and a holdout sample for testing the network. To reduce the
effect of confounding factors, an initial model would ideally require
training cases consisting of different units in the same scenario on the
same terrain, but it was not possible to assemble a data set of this size
and consistency from the data available. 'or these reasons it was neces
sary to evaluate alternative d- a-gathering approaches to the problem.
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Subjective Assessment from Observable Measures of Unit Performance

We hypothesized that certain observations of a battle in progress can
be used by an "expert" observer to predict the outcome of the battle. One
measure for each of the nine Principles of War was developed. Each of
these measures was designed to be calculable from the GNATT data. (As
noted above, the data-processing requirements for actually calculating the
measures were prohibitive for Phase I.) The following measures were used
(precise definitions are given in Table 1):

* Objective - direction of attack
* Offensive - engagement ratio
* Mass - force ratio
* Economy of Force - sector ratio
* Maneuver - speed
• Unity of Command - span of control
* Security - air defense protection
• Surprise - readiness of defense
* Simplicity - scheme of maneuver

Table 1

Notional Test Definitions and Data

MEASURES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1. OBJECTIVE - DIRECTION OF ATTACK
780 - DEFLECTION DEGREES FROM
OBJECTIVE 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9

2. OFFENSIVE - WGTD BY WEAPON
SYSTEM RATIO OF VEHICLE ENGAGED
(% DEF/% ATT) 6 7 1 0 9 4 3 5 8 2 9 8 7 0 2 1 5 4 3 1

3. MASS - WGTD BY WEAPON SYSTEM
FORCE RATIO (ATT/DEF) 7 8 5 6 2 0 1 6 7 2 5 5 3 1 5 8 7 6 9 2

4. ECONOMY OF FORCE - SECTOR RATIO

(MAIN/SECONDARY ATT) 9 7 0 5 2 8 1 6 0 4 4 3 8 7 5 2 3 5 4 8

5. MANEUVER - SPEED (AVG KM/HR) 9 5 9 8 7 2 1 8 2 4 3 9 6 33 7 4 5 0 1

6. UNITY OF COMMAND - SPAN OF
CONTROL (% UNIT WITHIN DIST) 8 2 5 9 4 7 5 6 0 2 1 5 9 6 7 0 2 9 8 1

7. SECURITY - ADA COVERAGE
(% FORCE COVERED) 5 7 7 6 9 8 0 1 6 5 3 3 4 6 8 9 1 1 4 8

8. SURPRISE - DEFENSE READINESS
(% OF DEF MOVING) 4 3 8 9 8 7 4 2 0 2 4 2 5 6 7 7 2 1 0 3

9. SIMPLICITY - SCHEME OF MANEUVER
(8 GROUPS/DIRECTION) 8 9 9 2 5 6 2 6 5 3 4 2 5 4 3 7 8 7 8 6

OUTCOME S S F F S F F S S F S S S F F S S F F F

A set of "notional" data for each measure was defined. Twenty cases
with randomly assigned values were created and an outcome was subjectively
assessed (success or failure) for each case based on best judgment. Table
1 shows the "notional" data and subjectively assessed outcomes for the
twenty cases.
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A neural-network model was built using the nine observables as input
and the best judgment result as output. The network was trained using
back-propagation learning. With this set of data, the neural net was able
to learn to discriminate successes from failures; that is, the neural net
learned to replicate its training set exactly. No hidden layers were re-
quired for the network to learn successfully.

This is one test of the neural network, but a more rigorous test is
its ability to correctly classify examples it has not seen before. There-
fore, the network was trained on nineteen of the twenty cases, and its
ability to predict the case that was not in its training set was tested.
Each of the twenty cases was omitted in turn, allowing observation of the
network's ability to predict each of the twenty cases from the other
nineteen.

In the holdout test, the network was able to classify sixteen of
twenty cases successfully. This is a 80% success rate. Thus, this simple
neural network was able to duplicate expert judgment on cases other than
its training set 80% of the time.

Neural-Network Model of Commercial Wargame Outcomes

The war game. The subjective data set used above might have been
contaminated by subjective biases and therefore a more objective test of
the neural-network approach was required. A commercial wargame called
TOBRUK (1975) was selected to be a second source of data. This manual war-
game had the advantages of being simple to learn and to modify for our pur-
poses, and, in addition, was easy to observe and to record data. Further,
the desert terrain of the game board closely resembled the terrain found at
the NTC.

TOBRUK recreates, in a realistic fashion, the tactical-level combat
problems encountered by the British Commonwealth, German and Italian forces
confronting each other in the North African desert in May and June of 1942.
TOBRUK is played in turns, each representing 30 seconds of elapsed time.
Armor, infantry and artillery employments are governed by a set of rules
presented for each scenario which clearly identify allowed and prohibited
actions by each player. One or more players is designated as being the
British Commonwealth side and one or more players is designated as being
the German-Italian or Axis side. In general, at the beginning of a
scenario, each side holds or enters into one portion of the board and must
maneuver its units and engage in combat with units from the other side un-
til time runs out or specified victory conditions are met. These victory
conditions are different for each scenario and are intended to "balance
out" the scenarios, thus making results as much dependent on player skill
as possible.

The TOBRUK mapboard is an hexagonal grid representing the flat, fea-
tureless desert terrain where the actual campaign occurred. The hexagonal
grid system is used to regulate movement and combat. The shaded hexagons
(called "hexes") are used to indicate area boundaries for unit placement in
the various scenarios. A grid-coordinate system, printed around the edge
of the mapboard, consists of letters running north-south and numbers run-
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ning northeast-southwest. Hex locations are identified by cross-
referencing a letter hex row with a number hex row.

Central to play are the chance dice and probability charts and
tables. The most important of these are the Hit Probability Table and the
Damage Table. When a player is ready to engage one of the other player's
vehicles with one of his own, he rolls the dice and looks on the first
table to determine whether he has hit the enemy vehicle. If so, he rolls
the dice again to determine the extent of the damage. Vehicles may be ren-
dered immobile, incapable of returning fire or totally destroyed.

At each turn, the players can maneuver or fire their vehicles, and
then estimate the results using the probability tables calculated from ac-
tual World War II performance data and provided with the game. For this
data collection, two players (who alternated between attacking and defend-
ing) and an observer (who collected data on moves and outcomes for input
into the neural-net model) were used. Vehicles were limited to tanks and
infantry fighting vehicles for simplicity.

Measures of unit performance. A few games of TOBRUK were played ini-
tially to acquaint the players and the observer with the game and to iden-
tify possible measures of performance that could be used to predict out-
comes in a neural-net model. Fourteen measures were identified:

1. Mass Attacker to defender vehicle ratio at
end of turn

2. Mix Number of attacker tanks/total attacker
vehicles at end of turn

3. Firepower Number of attacker vehicles fired in
turn/ number of defender vehicles fired
in turn

4. Mobility Total hexes moved by attacker/total at-
tacker vehicles at beginning of turn

5. Objective Absolute value of difference in average
attacker ing and direction to objective
in radians

6. Dispersion Average hexes between attacker vehicles

7. Synchronization Variance in heading

8. Frontages Standard deviation of widths of
attacker/standard deviation of widths
of defender

9. Security-Attacker Percent of attacker with flanks
protected at beginning of turn

25



10. Security-Defender Percent of defender with flanks
protected at beginning of turn

11. Defense Readiness Percent of defender vehicles not moved
in turn

12. Key terrain Number of prepared weapons emplacements

13. Obstacles Number of hexes blocked by obstacles

14. Obscuration Number of hexes obscured by smoke

Note that these measures were not the same as the ones used for sub-
jective assessment. This is because the measures reported here had to be
calculable from the TOBRUK board positions. However, all of these vari-
ables are comparable to the types of variables that are available from the
NTC or SIMNET systems.

Thirty games of TOBRUK were played and recorded. The games used a
single scenario in which the Allies defended a critical asset (assumed to
bh a fixed-communications post) and the Axis forces attacked to seize the
position. Each of the above measures was calculated and recorded on the
third turn after the first engagement of the game. The game was played by
four different individuals, with participants playing different roles.
Each game ended as either a success or a failure for the attacker. The
results of the 30 games, and the assessed values of the 14 variables, are
displayed in Table 2.

Results using all variables. A neural-network model was fitted to
the data from the plays of the game, with the fourteen measures as input
and win/loss of the attacker as the target output. As for the subjectively
assessed data, a neural-network model with no hidden nodes correctly
reproduced the training set with 100% accuracy.

The holdout sample test, however, yielded less satisfactory results.
Each case in turn was lefc out of the training sample. The net trained on
the other 29 cases was then used to predict the holdout case. Unfor-
tunately, the network identified the left-out case only 13 out of 30 times,
for a success rate of only 43% on cases other than its training set.

There were, we hypothesized, several reasons for this inability to
predict. First, the subjectively assessed outcomes were modal outcomes.
In other words, the outcome for a set of measures was assessed to be a vic-
tory or failure if that outcome was judged most likely, given those inputs.
But clearly there is uncertainty associated with performance given these
inputs. Indeed, for many games, TOBRUK players felt that victory or defeat
was not determined until the final moves of the game. So the TOBRUK data
were inherently noisier than the subjective data.

Second, the network was deliberately given "hard" cases. After the
first few rounds of the game, it became clear that one could determine the
output of the game by giving one side sufficient mass. Initial conditions
after the first 3 or 4 games were set in a range that allowed more of the
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Table 2

TOBRUK Input Data

Mass Mix F'Power Mobil Objec. Disper Synch Front Sec-A Sec-D Def Red Terr Obsta Obscur OUTCOME
1 1.3 1.0 0.7 2.3 0.1 5.0 0.8 0.5 0.8 0.9 0.8 0.4 34.0 0.0 F
2 2.0 1.0 2.0 0.0 0.1 10.8 0.8 2.9 1.0 0.8 1.0 1.0 0.0 0.0 F
3 3.6 0.5 1.0 1.6 0.2 7.1 0.6 2.2 0.9 1.0 1.0 1.0 6.0 0.0 F
4 3.4 0.4 3.3 0.7 0.7 3.0 1.0 0.2 1.0 1.0 1.0 0.5 6.0 0.0 S
5 3.8 0.5 1.8 1.6 0.4 11.4 0.6 1.8 1.0 0.6 0.8 1.0 6.0 0.0 S
6 2.8 0.4 1.0 1.6 0.2 9.8 0.8 1.0 1.0 1.0 1.0 1.0 8.0 1.0 S
7 3.3 0.4 3.0 1.2 0.7 6.5 0.8 0.7 1.0 1.0 1.0 1.0 8.0 2.0 S
8 2.3 0.3 1.5 1.2 0.4 4.8 0.8 0.8 0.4 0.8 0.8 0.7 8.0 3.0 F
9 1.8 0.4 1.0 1.2 0.1 12.9 0.8 1.4 0.6 1.0 1.0 1.0 8.0 2.0 F

10 5.0 0.3 1.0 2.1 0.2 5.6 1.0 1.7 1.0 1.0 0.0 0.0 8.0 2.0 S
11 3.3 0.3 1.5 1.4 0.2 3.5 0.8 0.7 1.0 0.7 1.0 1.0 8.0 0.0 5
12 2.2 0.3 2.0 1.7 0.5 5.0 1.0 0.7 1.0 1.0 1.0 1.0 3.0 4.0 F
13 3.8 0.7 1.0 2.1 0.1 6.8 1.0 1.4 0.7 0.3 1.0 1.0 8.0 0.0 S
14 2.5 0.7 2.0 1.5 0.2 7.1 0.8 1.1 0.9 0.8 1.0 0.7 5.0 5.0 F
15 3.5 7.0 0.0 2.1 0.0 7.1 0.6 1.6 1.0 1.0 1.0 1.0 12.0 1.0 S
16 1.8 0.6 0.5 1.3 0.4 8.9 0.6 0.9 1.0 1.0 1.0 0.7 6.0 1.0 F
17 3.3 0.9 1.3 1.5 0.2 10.0 0.8 0.7 0.9 0.3 0.7 0.0 20.0 0.0 5
18 2.5 0.7 0.4 1.9 0.2 9.1 0.8 1.3 0.9 1.0 1.0 0.8 12.0 1.0 F
19 3.3 0.8 0.0 2.5 0.0 8.4 0.8 0.9 1.0 1.0 1.0 1.0 15.0 3.0 F
20 6.3 0.1 2.0 1.9 0.0 2.3 1.0 0.4 1.0 1.0 1.0 1.0 5.0 0.0 S
21 5.0 0.4 1.0 1.8 0.0 7.7 1.0 0.7 0.8 1.0 1.0 1.0 5.0 0.0 S
22 4.7 0.3 1.5 1.6 0.1 4.2 0.8 0.7 1.0 1.0 1.0 1.0 9.0 1.0 F
23 3.3 0.5 0.0 1.9 0.2 8.6 0.8 1.2 0.9 1.0 1.0 0.7 2.0 2.0 S
24 1.8 0.6 1.0 0.9 0.0 5.3 1.0 0.7 0.9 0.8 1.0 1.0 18.0 1.0 F
25 2.3 0.6 3.0 1.6 0.5 4.7 0.8 0.5 1.0 1.0 1.0 1.0 23.0 2.0 F
26 3.0 0.1 2.0 0.9 0.1 8.7 1.0 0.9 0.8 0.7 1.0 1.0 19.0 1.0 5
27 3.3 0.2 1.0 0.8 0.1 1.8 1.0 0.4 1.0 1.0 1.0 1.0 4.0 2.0 5
28 3.3 0.7 4.0 1.1 0.1 8.4 0.8 0.9 0.9 0.8 1.0 1.0 11.0 2.0 S
29 2.0 0.7 1.3 1.2 0.2 8.8 1.0 0.9 1.0 1.0 1.0 1.0 7.0 2.0 S
30 2.8 0.2 0.0 1.8 0.1 4.9 1.0 0.6 0.9 1.0 1.0 1.0 13.0 2.0 F

other variables to determine outcomes. Still, a good neural-network model
should be expected to be able to perform better than chance. But recall
that the network was given only 30 training cases, with 14 input nodes from
which to predict the 30 success/failure values. We hypothesized that this
was a case of "overfitting."

Explanations for the weights. Table 3 shows the estimated weights
for the neural network using all fourteen variables, and using the entire
training set. Because of the small size of the training set and our
hypothesis of possible overfitting, the following explanations of the
weights should be regarded as tentative and subject to change with further
research.
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Table 3

Weights in TOBRUK Neural Network (Full Model)

Mass 20.24
Mix 29.81
Firepower - 1.04
Mobility - 8.04
Objective 6.60
Dispersion 27.92
Synchronization 16.75
Frontage -35.87
Security-Attacker 8.02
Security-Defender -18.41
Defense Readiness 0.95
Key Terrain -10.60
Obstacles -23.71
Obscuration -12.02

MASS - Mass is clearly a dominating factor in a successful attack.
Mass correlates directly with firepower (see comments under that variable
below), so greater mass increases the probability of destroying the enemy.
In addition to increasing the number of times one can fire, mass allows for
multiple engagements of the same target by many attackers. Mass also al-
lows for a more varied strategy. With more vehicles, the attacker can gain
an advantage by flanking his opponent and establishing multiple fronts. A
defender with more mass can prevent flanking of his own vehicles. In addi-
tion, a greater mass allows the attacker to absorb more casualties while
attempting to achieve his objective. As expected, the neural-net model
placed a high weight on the Mass variable, indicating a high correlation
between the mass ratio and the chance of victory.

MIX - This weight was also highly positive. This makes sense as the
German Pzkw-IIIh tanks are faster, deadlier, and better armored than the
Italian M13/40's and, with the same absolute number of tanks, one would ex-
pect to do better with more Pzkw-IIIh's than with more M13/40's.

FIREPOWER - This weight was in general small in magnitude, and seemed
to fluctuate between positive and negative values depending on the case
removed for deriving the weights. This might seem surprising--it would ap-
pear that being able to deliver greater firepower should mean having a
greater ability to destroy the enemy. But (as noted above under Mass) much
of this firepower effect may have been accounted for by the Mass variable.
Moreover, the conditions under which measurements were taken may have been
poorly suited to measuring the independent effect of mass. This is because
one could not fire and move one's tank in the same turn. This caused the
attacker to have a mixed strategy in respect to firepower and mobility or
speed. The attacker had to choose between moving in as fast as possible to
overrun the enemy by sheer mass, and stopping to fire before exposing his
flank or taking a damaging hit. Also, due to the fact that the Pzkw-IIlh's
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were easily M-killed (mobility killed), many would be forced to stop and
fire from a long range with a very small chance of killing the defender as
they were helpless to do anything else. The defender, on the other hand,
rarely moved and had a chance to fire all of his tanks (unless smoked)
every turn. The defender was in a position where it made no sense to move
as being in a weapon pit gave a defensive advantage, and there was no cost
for the number of vehicles the defender lost in protecting the base.
Therefore, the defender fought to the death in preplanned positions,
whereas the attacker had to throw all his forces at the defender in the
hope he could kill enough of them or keep enough of his forces alive to
reach the base.

MOBILITY - The weight for mobility was small in magnitude (in fact,
depending on which case was left out, it was often negative). This might
lead one to believe that mobility was not important and actually a
hindrance in trying to win a battle. The importance of mobility is
described above. But in fact, mobility is crucial to battle success. The
attacker needs to be close enough to deliver firepower effectively, espe-
cially to gain the ability to deliver flanking shots. If the attacker
charges in, the defender must react quickly and in full force to prevent
the attacker from penetrating. Thus, mobility of the attacker forces the
defender to play to his tempo: if the attack is sluggish, the defender can
sit back and slowly pick off the attacking vehicles one by one (Crouch and
Morley, 1989). A lethargic attack also gives the defense time to make any
adjustments and to maneuver.

Why, then, was this not reflected in the neural-network weight?
First, we noted above the rule not allowing firing and moving a tank in the
same turn. Second, the time at which the snapshot was taken was usually
after the initial moves when the attacker was charging the enemy and had
yet sustained few casualties. By the time the snapshot is taken, many of
the tanks are mobility killed and cannot move if desired (one way to adjust
this in the future would be not to count the tanks that cannot move in the
Mobility/Speed ratio; instead, only those tanks able to move on that turn
would be recorded in this measure). In addition, at this point in the
battle, strategic decisions need to be made about whether to stop and fire
nc that the tanks are within range to do damage to the defender.

Mass, Firepower, and Mobility are tightly coupled aspects of the
battle. We suspect that our data set was too small to allow us to sort out
their independent and interactive effects. Interactive effects would be
accounted for by a neural network with hidden nodes. A network without
hidden nodes was able to correctly replicate classification of the training
set, but we suspect that a larger data set would reveal interactions that
would require a network with hidden nodes.

SYNCHRONIZATION - Players felt that this variable should not make a
difference. Players always oriented themselves as to receive the least
number of flank shots. Being unsynchronized on the offense may actually
have signaled that a piece of the front of the defender had been destroyed,
thus allowing the attacker to pivot and protect himself while continuing to
expose the enemy's flank. The weight for synchronization, however, was
positive (but not as high as mass or mix).
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OBJECTIVE - The only reason for not heading directly at the objective
would be the engagement of the defender. The weight for this variable was
positive but small in magnitude.

FRONTAGE - A wider front was probably advantageous due to the flank-
ing opportunities it presented, however, one must have enough mass so that
the front is not too thin. If the front is too spread out, the defender
may be able to destroy parts of it and then gang up on what remains. The
weight for this variable was large and negative. This is probably due to
the fact that most of its effect was captured by the high positive weight
for mass. The large negative effect then captured the disadvantage of
having a front that was spread too thin for the available mass.

DISPERSION - If troops are not well enough dispersed, it creates an
easy advantage for the defender to obtain flank shots and a defensive ad-
vantage in not needing to worry about their own flanks. The weight for
this variable was large and positive.

OBSCURATION - If used at an inappropriate or inopportune time, the
smoke may have little effect upon the outcome of the battle. Smoke can be
used effectively. But because it remains for only 2 turns (not including
smoke caused by burning tanks), the amount or timing of the use of smoke
may not show up during the snapshot turn. The weight for obscuration was
moderately negative.

OBSTACLES - As briefly touched on in the discussion of Mobility,
there is rarely any need for the defender to leave a weapons pit, only not
to be occupying it due to destruction. Weapons pits helped the defender,
but once the defender was outnumbered, the weapon pit did little good. One
tank, in a weapons pit or not, is not going to do much against 7 tanks.
The estimated weight for obstacles was large and negative, possibly
reflecting this outnumbering effect.

READINESS - As noted, there was little or no incentive for defending
tanks to move. At 100% readiness there was probably an equal chance that
there would be victory for either side. Who won was probably dependent on
other factors. The estimated weight for readiness was very small in mag-
nitude.

SECURITY (ATTACKER AND DEFENDER) - Security Defender should provide a
more accurate clue to the chance of succeeding or failing due to the fact
that if a defender was vulnerable, it gave the attacker a much greater
chance of killing the defender, whereas the Security Attacker was not as
important as the attacker was vulnerable from both the front and the flank.
The weight for Security Defender was indeed moderately negative (indicating
a negative relationship to success on the attack). Security Attacker had a
positive weight, but it was small in magnitude.

Results using only critical variables. The next step was to identify
the few variables felt to be the most important to predicting success or
failure. This assessment was based on the judgment of the players of the
game about which variables were most important for predicting success.
Five variables were chosen: Mass, Mix, Firepower, Mobility, and Defense
Security.
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A neural network was trained using only these five input variables.
This time, the model was unable to fit exactly its entire training set:
after thousands of time steps, it was still predicting three cases incor-
rectly (or 10% of the total 30 cases). Adding two hidden nodes to the net-
work allowed it to match one additional case in the training set.

The next test of the neural network was to test it on its prediction
of each case after training on the other 29 cases. This time, the neural
network with five variables and no hidden nodes did much better than the
model that used all the measures: it correctly predicted 22 of the cases
it had not seen, for a percentage score of 73%. This confirmed the
hypothesis that the model with 14 inputs was overfitted.

The final test of the neural-network model was to compare it with
human judgment. The game boards at the time at which measurements were
taken for the neural network were reconstructed, and two project staff mem-
bers were asked to predict the outcome. Both staff members were very
familiar with the TOBRUK game--in fact, they had played many of the games
in the data set and could reasonably be called experts. Note that in this
test they had access to more information than the neural network, in that
they had a holistic view of the game board, whereas the neural network had
only the five performance measures. Neither the human experts nor the
neural network could use information about game dynamics (which we
hypothesize to be powerful predictors of success). The two human experts
correctly predicted 23 and 20 cases, or 77% and 67%, respectively. Thus,
the neural network (which predicted 22 cases correctly) did only slightly
worse than the better of our human experts, a quite credible performance.

Table 4 cross-tabulates the frequencies of cases classified correctly
and incorrectly by the network and each of the experts. Numbers shown in
parentheses are fitted values for the model that assumes independence be-
tween network and human judge. Non-independence would arise if some cases
were more difficult than others for both network and expert, causing cor-
relation between the network's and the expert's classifications. Both ex-
perts agree with the network more than predicted by the independence model.
But this result was significant for only one of the human experts (p-.04
and .24 for Expert 1 and Expert 2, respectively). Moreover, the two ex-
perts agreed with each other no more than predicted by chance (p=.54).

Table 4

Classification of Cases: Network and Human Experts

EXPERT I
Correct Incorrect

Correct 17 5
(15) (7)

Network
Incorrect 3 5

(5) (3)
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Table 4 (Continued)

Classification of Cases: Network and Human Experts

EXPERT 2
Correct Incorrect

Correct 18 4

(17) (5)
Network

Incorrect 5 3
(6) (2)

Analysis of weights. Table 5 shows the correlation of the weight
vector obtained when the network was trained using the entire training set
with the weight vector obtained when the network was trained with each of
the cases left out. When the full-sample network agreed in its classifica-
tion with the one-left-out network (whether the classification was correct
or incorrect), the weights correlated .999 or above. When the one-left-out
classification was incorrect and the full-sample classification was cor-
rect, the weights correlated on average .920, and never higher than .992.

Table 5

Correlation of One-Left-Out Weights with Entire Training Set Weights

Case Classified Correctly by Both Networks
(Average - 1.000)

Case 1 1.000
Case 4 1.000
Case 5 1.000
Case 7 1.000
Case 8 1.000
Case 9 1.000
Case 10 1.000
Case 11 1.000
Case 12 1.000
Case 13 1.000
Case 14 .999
Case 16 1.000
Case 17 1.000
Case 18 1.000
Case 20 1.000
Case 21 1.000
Case 24 1.000
Case 25 .999
Case 26 1.000
Case 27 1.000
Case 28 1.000
Case 30 1.000
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Table 5 (Continued)

Correlation of One-Left-Out Weights with Entire Training Set Weights

Cases Classified Incorrectly by Both Networks
(Average - 1.000)

Case 3 1.000
Case 22 1.000
Case 29 1.000

Cases Classified Correctly by Full Sample Network,
Incorrectly by One-Left-Out Network

(Average - .920)

Case 2 .777
Case 3 .973
Case 15 .904
Case 19 .992
Case 23 .955

Table 6 shows the fitted neural-network weights using the full train-
ing set. Note that this network was unable to correctly classify three of
the cases in the training set.

Table 6

Weights for 5-Variable Model

Mass 52.90
Mix -1.05
Firepower 5.38
Mobility -11.52
Security Defense 5.03

MASS - This was clearly the dominating factor. None of the other
weights comes close to it in magnitude.

MIX - This variable went from having a highly positive weight (on
the full data set) to having nearly a zero weight in the five-variable
model. Setting it to zero did not cause the network to change its clas-
sification of any cases, indicating that this variable did not help the
network's predictive power. This is surprising, given the superiority of
Pskw-IIIh's.
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FIREPOWER - The magnitude of this weight was small, but it was con-
sistently positive across cases left out (being negative but very small in
two instances). Setting its weight to zero caused the network to misclas-
sify two additional cases. As noted above, with the small data set the ef-
fect of Firepower probably could not be estimated independently of Mass and
Mobility.

MOBILITY - Unlike the simulation using all the variables, the weight
for Mobility was moderately negative (recall that it was positive but very
small when all variables were included). Setting its weight to zero caused
seven additional cases to be misclassified. The negative effect may have
reflected the rule that moving tanks cannot fire.

SECURITY DEFENDER - This weight was positive but small. This is the
direction opposite to that expected. But setting it to zero caused three
additional cases to be misclassified.

Discussion

When all variables were used to fit the model, the resulting network
was unable to predict very well outside its training sample. There are
several reasons for this. First there were only thirty trial runs and
fourteen variables. This is a limited number of trials to determine the
possibly complex interactions between all of these variables.

Second, after about the first 5-7 trials, the players had a rough
idea of what would create a decisive victory in terms of mass, mix and
strategy. Many "decisive" victories were therefore eliminated and this
resulted in many battles that went down to the wire. The fact that chance
had a greater importance in these cases rather than strategy or sheer num-
bers would cause the model difficulty in predicting a winner from the snap-
shot when even the players were unsure several turns later. If many more
trials were run, the neural net would be able to predict the winner or give
the percent chance that one side would win in that particular situation (in
the same way that meteorologist predict the weather by stating "there is a
40% chance of rain today").

Last is the fact that in each case the players tried to vary as many
of the factors as possible without biasing the strategy. By adjusting the
initial mass, mix, number of weapons pits, smokes and obstacles and the
strategy of attack (which affected frontage, synchronization, dispersal,
and objective) all but 5 of the variables in the equation were influenced
so as to hopefully induce variance in the data sample. (The five that were
not altered were Security Attacker and Defender, Firepower, Mobility, and
Readiness). Since each case is unique in its characteristics, the neural
net relies on its inclusion in the model to come up with weights that will
fit all the data. Theoretically, if enough data points are included,
situations will begin to repeat themselves and the neural net will be able
to predict with more accuracy.

When the number of variables included in the model was reduced to
five, the model's ability to predict cases it had not seen was dramatically
improved to rival human performance. The cost, of course, was an inability
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to correctly classify all cases in the traini:ig sample. Perhaps a chance
element was at work on these cases, or perhaps the:- reflected more complex
variable interactions that a simple model could not handle (such as TOBRUK
data).

An analysis of the weight magnitudes on both the full model and the
reduced model clearly showed the decisive effect of ttie mass variable. Its
weight was consistently large and positive. The contributions of the other
variables were secondary, and the direction of their influence seemed to
depend on which otlher variables were included in the model. Future simula-
tions should adjust the initial mass to a range in which the model would be
unable to predict the outcome from mass alone.
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CONCLUSIONS AND RECOMMENDATIONS

The results of this Phase I work suggest that neural-net methodology
holds promise as a low-cost substitute to detailed task analysis for pre-
dicting unit performance in training exercises such as those at the NTC.
The networks developed and teqted are able to do a credible job of recog-
nizing and le, rning patterns of variables which are associated with success
in the actual exercise.

Conclusions From Phase I Work

The neural-network model described earlier, despite its extreme
simplicity, predicted as well as human judges who could be considered ex-
perts at the prediction task. Yet, because of the constraints of the Phase
I task, the distinctive capability of neural-network models--their poten-
tial for representing dynamic ard configural cues that humans report to be
important in classification problems of this kind--could not be tested.
Because the network operated on a single "snapshot" of the game board, it
was not able to represent the "flow" of the battle. Because it was given
only simple measures such as equipment tallies, it was not able to repre-
sent patterns of vehicle placement, as our hypothetical general on the hill
would use to judge the overall quality of a static fighting position. Note
that although our human judges had such configural information available to
them, our neural network was able to equal their performance without the
c-.figural cues. An interesting research question is the degree to which
the more complex multi-layered network would outperform a simple network
like the one trained here.

A complete neural-network model of unit performence in a combat en-
gagement such as those simulated at the National Training Center will need
to be capable of digesting a mass of data and organizing it into under-
standable patterns which then can be evaluated. This means, for instance,
being able to track the movement of every vehicle and system involved in
the engagemeat (or at a minimum, a consistent sample of vehicles) in order
to estimate concepts such as mass, direction, velocity, and synchroniza-
tion. At least theoretically, the MILES and related data-capture systems
being installed at the NTC will provided an automated source of those data.
Alternatively, a simulation system such as SIMNET will do the same. The
first problem for a neural-net model to address is the processing and ag-
gregation of that mass of data to arrive at the structure of the neural-net
model.

Because of resource and data constraints in this limited Phase I
research, this data-capture and aggregation problem could not be suffi-
ciently addressed. Sufficient research on pattern-recognition algorithms
has been completed, however, to convince us that these problems, while of a
large scale, can be solved. The patterns which will need to be assembled
from the mass of MTLES data are relatively simple geometrics which a model
should have little trouble aggre6,;ing.

In this Phase I, we began at the point in which these intermediate
variables had been assembled into patterns--that is, we assumed that
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measures of variables such as mass, firepower, and synchronization had al-
ready been constructed from raw MILES-type data. The neural-net models
built and tested for the two data sets were intended to test whether a
simple model of this type could do an acceptable job of learning to predict
the outcome of the engagement. In the case of both the hypothetical data
and the board-game data, the results of the experiment suggested that a
neural-net model was an appropriate choice. Two pieces of evidence
described in this report support this conclusion. First, the model did as
well as human experts in predicting engagement outcomes in these two tests.
Second, the weights for the variables in the model correspond closely to
the relative importance of the concepts of AirLand Battle doctrine ex-
amined. These two findings suggest that the neural-net models built and
tested possess both construct and face validity.

The substantive results of our modeling efforts are further supported
by Brigadier General (Retired) William W. Crouch and Lieutenant Colonel
Thomas V. Morley who identified the conditions for a successful attack
based on their observations of units at the NTC. These were:

0 Use tight, agile formation capable of rapid, controlled employ-
ment.

0 Have constant maneuver that avoids being slowed by improper
overwatch techniques.

* Avoid dissipating the unit's mass through separate engagements.

0 Concentrate massed artillery fires to destroy or degrade enemy
direct fire systems during the assault phase.

0 Be able to commit successive units without gaps that can be ex-
ploited by the enemy.

* Get on the objective as rapidly as possible to gain the attack-
ing force's kill advantage.

These conclusions made based upon actual training exercises were very
similar to the ones based upon results from the simulated battles of
TOBRUK. A more complex neural net will provide new insight into which fac-
tors influence the course of battle and to what degree.

Implications For Follow-On Work

One critical aspect of neural-network models is that they learn, from
data they are presented, to recognize patterns when offered new data. This
means that the initial data set from which the model is trained must be
large and rich. Therefore, a critical issue for continuing work is access
to such a database. As discussed above, the NTC database appears to be
noisy and incomplete and may not be useful for this purpose at the present
time. (Steps are being taken to improve the instrumentation and data col-
lection at NTC which will allow reconsideration of this issue in the
future.) The SIMNET system is a reasonable substitute, however; it
produces a data set which replicates a clean NTC data set and, because it
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is a networked computer simulation, the noise and missing-data problems are
minimized. Initial conversations with other contractors involved in the
design, implementation, and operation of SIMNET suggest that this data set
will allow the necessary modeling activity to proceed. In particular, SIM-
NET is able to faithfully replay the same engagement so issues of
variability in the data can be more easily controlled.

This still leaves the issue of a front-end pattern-recognition
processor for the neural-net model. The data which the model must
preprocess is a large, three-dimensional data set which includes the loca-
tions and activities of a myriad of vehicles, weapons, and individual sol-
diers over some period of time. From these data, the net must be able to
learn to recognize visual, spatial, and temporal patterns of movement,
massing of forces, velocity of the attack, synchronization of the attack
and defense, firing patterns, etc. Building such a front-end processor
will be a long and complex task, but we believe that it can be aided con-
siderably by the development of a combination of hard coding of judgmental
data and a learning network model. This combination approach is described
in more detail below. The most likely combination would be an expert
judgment-based module which was able to capture the broad qualitative pat-
terns of unit movement to, and initial stages of, an engagement, coupled
with a learning network which then processed those data to identify the
modeled precursors of engagement success and failure. Such a model could
be taught and then operated in a predictive mode, from a data set such as
that available at SIMNET.

Follow-On Research Issues

A number of theoretical and practical issues need to be addressed
before the promise of neural networks for unit performance measurement be-
comes a reality. Some of the modeling decisions that need to be made and
some of the technical hurdles that need to be overcome to develop a suc-
cessful neural-network model of unit performance are discussed below.

Output. The first task is to specify the problem the system must
solve: specifically, what question the system is supposed to answer. In
Phase I, the problem of predicting, from data on vehicle positions, types
and movements, the ultimate success or failure of a unit in an NTC-type
training exercise was the focus. The conclusion from this preliminary
research is that this task is appropriate and technically feasible for
neural-network technology. If this is the problem chosen for a more am-
bitious neural-network system, several questions remain to be asked, in-
cluding: (1) Is the system's response supposed to be unidimensional (e.g.,
success vs. failure) or multidimensional (e.g., using different measures of
success or failure)? (2) How should success be measured? (3) Should the
system respond with a yes/no answer, or with a graded response indicating
the probability of success?

Input representation. A neural network's ability to learn can be
greatly influenced by the way in which input data is represented. For ex-
ample, Gorman and Sejnowski's (1988a) sonar signal recognition system was
given input obtained by preprocessing raw sonar signals using a Fourier
filtering method. This preprocessing technique was developed using ex-
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perimental data about how the human perceptual system processes signals.
It is likely that the system's good performance was in part due to this in-
put preprocessing. Many neural-network systems for visual tasks preprocess
inputs to achieve location, rotation, and scale invariance. Systems that
can tolerate translation or deformation (e.g., Fukushima and Miyake, 1982)
require a very large number of processing units. Network inputs must be
readily computable from raw inputs (in this case, data such as vehicle
location, vehicle type, and temporal marker).

Network structure. Another determinant of network performance is the
structure of the network. This includes the pattern of connectivity and
the form of the activation function. The more unconstrained the pattern of
links, the longer the training time tends to be (because of the large num-
ber of parameters to be learned) but the more general the problem the sys-
tem can eventually solve.

An active area of research in the neural-network community is the
development of modular systems. Separate networks can be designed for
relatively separable problem components, and "pieced together" to solve
more complex problems. For example, one network might be trained to recog-
nize different maneuver patterns; another might be trained to recognize the
pattern or timing of an attack. After training, these pieces could be in-
corporated as components in a larger system that judges overall unit per-
formance.

Different learning algorithms pose different requirements on the
structure of a network. The Neocognitron (Fukushima and Miyake, 1982) as-
sumes a particular layered structure and a particular form of propagation
of a- ivation between layers. The standard back-propagation technique re-
quires a layered feedforward network (all links go to nodes in the next
layer from the sending node; no backward or within-layer nodes are allowed)
and a differentiable semi-linear activation function (Rumelhart, Hinton and
Williams, 1986). The technique has since been generalized to some kinds of
recurrent networks. As described by Hinton and Sejnowski (1986), the
Boltzmann machine operates on a completely connected network with a certain
probabilistic form for the activation function. The technique applies to
arbitrary connectivity patterns, and can be generalized to different proba-
bilistic activation functions (Laskey, in preparation).

Training the network. Important questions to be considered are: (1)
Which training technique should be used? (2) What kind of feedback should
be provided to the system? (3) What kind and number of training instances
should be provided?

The first and second questions interact, because different training
mechanisms make different assumptions about what kind of feedback (if any)
is provided to the network. In the context of measuring unit performance,
it would seem necessary to provide the system with labeled training data.
That is, if the system is expected to learn to distinguish between success
and failure of a unit, it needs to know whether each input corresponds to a
success or failure. It may also be useful to give it other information
(e.g., a modular system would need feedback to train each submodule).
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Given that a supervised learning technique is appropriate, the ques-
tion remains as to which technique to use. In Phase I of this project,
back propagation was applied. The reason for this choice is the
technique's popularity, its suitability for the problem, and the ready
availability of software (McClelland and Rumelhart, 1988). This technique
is a strong contender for a more ambitious unit performance network to be
developed in future research. But there are problems with the back-
propagation technique. One problem is that learning can be very slow when
there are many layers. This problem is, we believe, fundamental. It must
be expected that complex patterns will take a long time to learn, and other
learning techniques in fact face the same difficulty. There are possible
ways to lessen the severity of the problem, and future research will ex-
plore these. Making the system modular and training the pieces separately
is perhaps the most promising idea. Of course, its success will depend on
how the problem is split up. Researchers are working on modular systems,
but we know of no general results as yet on guidelines for how to
modularize a problem. Success of training will also be largely dependent,
both on the pattern of connectivity imposed on the system and on the input
representation. Both these factors are described above.

A second issue is convergence properties of the back-propagation al-
gorithm. The algorithm is a gradient-descent technique, and gradient-
descent algorithms can get stuck in local minima or begin to oscillate.
When there are no hidden nodes, it is guaranteed to converge to a solution
(Rosenblatt, 1958). However, when there are hidden nodes, these results no
longer apply. When hidden nodes were added to the networks, oscillations
were sometimes encountered (but we do not know whether, if we had waited
longer, the system would have stopped oscillating).

A final issue is the number and kind of training instances required
to arrive at a solution. This issue is discussed further below.

The training data. The training data given to the system must be
representative of the range of problems it is expected to solve. The sys-
tem must be given enough similar cases that it does not arrive at spurious
generalizations. This problem was encountered in the sample network. When
29 training instances were provided for a network with 14 connections to
learn, the system performed poorly (correctly classifying less than half
the holdout cases). But a system with five connections (using five care-
fully chosen inputs) performed as well as our human subjects.

In other research, networks have typically been given hundreds to
thousands of training instances. Such quantities of training data will be
very difficult to obtain from NTC exercises, but may be available from SIM-
NET runs. It may be possible to construct a simulation that generates
large numbers of training instances, build a model based on the simulation,
and then use that model structure as a starting point for training a system
on more realistic data. If the structure and connectivity of sub-modules
built from a simulation can be tested, the amount of training data required
from the field might be drastically reduced.

Neural-network learning, as currently applied, is very bottom-up.
From a very large number of training instances, the network learns how to
classify future instances correctly. This works well for simple problems,
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especially when the input representation and network topology can be con-
structed to exploit the problem structure. But on complex tasks, success-
ful humans learn by combining the bottom-up and top-down modes. That is,
learning is most successful when training instances are presented with ex-
plicit instruction on useful classification principles. Devising top-down
instruction for neural networks is difficult, because a network's internal
structure is generally opaque to humans. Analyses of the internal struc-
ture of even simple networks has taxed researchers' ingenuity (e.g., Gorman
and Sejnowski, 1988b). Modularizing networks is one way of approaching
top-down instruction- -feedback can be provided both on the "final" output
and on the output of the modules providing intermediate answers.
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APPENDIX:

RULES FOR MANUAL WARGAME

Additional Rules for TOBRUK:

1. Smoke (Obscuration). Smoke in the line of sight between the
firer and the engaged vehicle obscures the engaged vehicle from
being acquired.

2. Mines (Obstacles). No more than four obstacles may be placed
next to each other.

3. Victory condition. The attacker must move one of his vehicles
onto the defender's "base," which is a single hex located at
122 on the gameboard.

4. Combat - Firepower. The British Grant tanks were only allowed
to fire their 37mm gun and their 75mm gun was treated as if it
did not exist.

5. Combat - Weapons. The Germans were assumed to be using all
APCR (armor piercing) rounds. This gave them a greater range
in which they could fire and higher probability of damaging or
destroying the defending British tanks.

6. Stacking. The British were allowed a maximum of 3 Grants in a
hex and the Germans were allowed a maximum of 4 Pzkw-IIIh's in
a hex and 8 Italian M13/40's.

NOTE: To update TOBRUK to reflect the characteristics of present day con-
ventional weapons would be a simple process. With current knowledge of the
speed, armor, accuracy, lethality, and range of present day tanks, new
movement factors, and hit probability and damage assessment tables could be
made. Also the size of hexs could all be made relative to the speed of
today's tanks to keep the battlefield in scale. Even such changes in tech-
nology that now allow tanks through to see through smoke or electronic jam-
ming devices that block or confuse firing systems of opponents could be ac-
counted for fairly easily.
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